分析总结:

以上解法所设,仅仅考虑了斜率存在的情况,结合图形 易知 x=4 也满足条件, 所以上述解法是不完整的, 漏掉了斜 率不存在也符合题意的这一解: x=4. 故若将方程设为点斜式 或斜截式,则应对斜率是否存在进行分类讨论,否则极易漏解.

再试身手

已知圆 C: $(x-1)^2+(y-1)^2=4$, 直线 l 过点 P(2,3)且与圆 C 交 于A、B两点,且 $|AB|=2\sqrt{3}$,求直线l的方程.

「答案] *x*=2 或 3*x*−4*v*+6=0.

例 2. 设直线 l 的方程为 $x+y\cos\theta+3=0$ ($\theta\in\mathbb{R}$),则直线 l 的 倾斜角 α 的范围是 .

错解: 由直线方程可得斜率 $k=-\frac{1}{\cos\theta}$

 $\cos\theta \in [-1, 1] \perp \cos\theta \neq 0, \quad \forall k \in (-\infty, -1] \cup [1, +\infty).$ 则 $\tan \alpha \in (-\infty, -1] \cup [1, +\infty)$,又 $\alpha \in (0, \pi)$,

$$\therefore \alpha \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right].$$

此题同样忽视了当 $\cos\theta=0$ 时斜率不存在这一情况. 当 $\cos\theta=0$ 时,方程变为 x+3=0,其倾斜角为 $\frac{\pi}{2}$,故倾斜角的范

围应是 $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$.

在倾斜角和斜率的关系中, 若 k=0, 则倾斜角为 0° ; 若 k>0,则倾斜角为锐角,且k随着倾斜角的增大而增大;若 k<0,则倾斜角为钝角,且k随着倾斜角的增大而增大;若k不存在,则倾斜角为90°.

再试身手

若曲线 C_1 : $x^2+y^2-2x=0$ 与曲线 C_2 : y[y-k(x+1)]=0 有四个不 同交点,则实数k的取值范围是()

A.
$$\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$$

A.
$$(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$$
 B. $(-\frac{\sqrt{3}}{3}, 0) \cup (0, \frac{\sqrt{3}}{3})$

C.
$$[-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}]$$

C.
$$\left[-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right]$$
 D. $\left(-\infty, -\frac{\sqrt{3}}{3}\right) \cup \left(\frac{\sqrt{3}}{3}, +\infty\right)$

二、截距问题

1. 混淆截距和距离

例 3. 求过点 P(-5, -4) 且与两坐标轴所围成的三角形面积 为5的直线方程.

错解:设直线方程为 $\frac{x}{a} + \frac{y}{b} = 1$,且直线过点P(-5, -4),

又 $\frac{1}{2}ab=5$, 故 ab=10······②

由①②无解,故直线方程不存在.

分析总结:

这里将直线在 x 轴和 y 轴的截距当成距离导致错解. 事实

上,直线与两坐标轴所围成的三角形面积为 $\frac{|ab|}{2}$,而不是 $\frac{ab}{2}$ 。

2. 忽视截距为零

例 4. 求经过点 (2, 1) 且在两坐标轴上截距相等的直线方程.

错解:设所求直线方程为 $\frac{x}{a} + \frac{y}{b} = 1$.

由 $\frac{2}{a} + \frac{1}{b} = 1$ 且 a = b得 a = b = 3.

:. 所求的直线方程为 x+y=3.

分析总结:

上述解法是以截距不为零为前提的. 事实上, 当直线在两 坐标轴上的截距都为零,即经过原点时,也满足题意,此时 直线方程为 $y=\frac{1}{2}x$, 故满足题意的直线方程为 $y=\frac{1}{2}x$ 或 x+y=3.

截距相等包括两层意思,一是截距不为零时相等,二是 截距为零时相等,而后者常被忽视,造成漏解.因此,对于此 类题目, 需分类讨论求解.

再试身手

已知直线 $l: (m^2-2m-3)x+(2m^2+m-1)y=2m-6$ 的横、纵截距 相等, 求实数m的值.

『答案 』*m*=3 或 *m*=−2.

三、求直线方程问题

1. 忽视与 x 轴平行的情况

例 5. 已知直线 l 过 (1, 2)、(2, b),求直线 l 的方程.

错解:由两点式,得直线 l 的方程为 $\frac{\gamma-2}{k-2} = \frac{x-1}{2-1} \cdots 3$,

整理, 得所求的方程为 (2-b)x+y+b-4=0.

分析总结:

这里忽视了b=2, 即与x轴平行的情况, 若b=2, ③式不 成立.

一般地, 过 $A(x_1, y_1)$ 和 $B(x_2, y_2)$ 两点的直线方程可写成 $(x_2-x_1)(y-y_1)-(y_2-y_1)(x-x_1)=0$ 的形式. 在 $x_2\neq x_1$ 且 $y_2\neq y_1$ 时才写成 $\underline{y-y_1} = \underline{x-x_1}$.

2. 忽视两条直线重合的情况

例 6. 已知直线 ax+3y+1=0 与 x+(a-2)y+a=0 平行, 求 a 的 值.

错解: :: $\frac{a}{1} = \frac{3}{a-2}$, 解得 a=-1或 a=3.

分析总结:

上述解法忽视了两直线可能重合的情况. 因为当 a=1时, $\frac{a}{1} = \frac{3}{a-2} = \frac{1}{a}$, 此时两直线重合, 所以 a=-1 舍去, 故 a 的值为 3.

3. 忽视直线的存在性的情况

例 7. 已知直线 l_1 : (m+3)x+(m-1)y-5=0 与直线 l_2 : (m-1)x+(3m+9)y-1=0 互相垂直, 试求 m 的值.

错解: 直线 l_1 的斜率为 $k_1 = -\frac{m+3}{m-1}$, 直线 l_2 的斜率为 $k_2 =$